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ABSTRACT

We have investigated thin films and junctions based on copper indium diselenide (CIS)
which have been grown by electrochemical deposition.  CIS is a leading candidate for use in
polycrystalline thin film photovoltaic solar cells.  Electrodeposition is a cost-effective method for
producing thin-film CIS.  We have produced both p and n type CIS thin films from the same
aqueous solution by simply varying the deposition potential.   A CIS pn junction was deposited
using a step-function potential.  Stoichiometry of the single layer films was determined by energy
dispersive spectroscopy.  Carrier densities of these films increased with deviation from
stoichiometry, as determined by the capacitance versus voltage dependence of Schottky contacts.
Optical bandgaps for the single layer films as determined by transmission spectrocopy were also
found to increase with deviation from stoichiometry.  Rectifying current versus voltage
characteristics were demonstrated for the Schottky barriers and for the pn junction.

INTRODUCTION

Copper indium diselenide (CIS) is one of the best optical absorber materials used in
polycrystalline thin film photovoltaic solar cells [1].  This is due to its favorable electrical and
optical properties, stability, and inexpensive means of production.  Conversion efficiencies of
17.8% have been achieved for a vapor deposited CIS based solar cell [2].  Electrochemical
deposition is an inexpensive alternative to the standard vapor deposition techniques for producing
thin-film CIS [3].

 Stoichiometric variation in polycrystalline CIS leads to a high concentration of electrically
active native defects.  Small variations from a Cu-to-In ratio of unity have been shown to result in
large changes in the carrier density [4].  In fact, the semiconductor type changes from n to p as the
Cu to In ratio changes from less than one to greater than one. However, CIS has been shown to be
electrically and structurally stable over a wide range of stoichiometries and their associated native
defect concentrations [5].  This behavior has been recently explained in terms of electrically
inactive and ordered defect pairs [6].

The stoichiometry of our electrodeposited thin films is potentiostatically controlled.  We
have previously shown that the Cu-to-In ratio will demonstrate a linear dependance with
deposition potential over a fairly wide range [7].  Therefore, we are able to deposit thin films with
different electrical, optical properties, and semiconductor type from the same aqueous solution by
simply changing the deposition voltage [8].

The optical band gap of CIS can be calculated from its absorption spectrum assuming
a direct energy gap [9].  CIS has been shown to have a low electron effective mass
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(m
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e
) [10].  Therefore, these materials become degenerate at low electron carrier

densities and we would  expect a Burstein-Moss shift in the optical bandgap [11].  This effect has
been observed in CIS single crystals grown by the vertical Bridgman method [12].

The current versus voltage (I-V) characteristics can be used to determine the barrier
heights of metal to CIS junctions.  For an ideal Schottky contact with an n-type semiconductor,
the barrier height qφB is the difference in the metal work function qφm and the semiconductor
electron affinity qχ.

( )χφφ −= mB qq (1)

When the metal work function is comparable to or smaller than the semiconductor’s electron
affinity we would expect an ohmic contact for an n-type semiconductor.  In the case of a p-type
semiconductor, the barrier height is the difference between the metal work function and the sum
of the electron affinity and the bandgap. Assuming ideal junctions and an Al work function of
4.28 eV [13] , electron affinity of 4.48 eV and a CIS bandgap of 1eV [14], we would expect Al to
make an ohmic contact on n-type CIS and a Schottky contact to p-type CIS, with a barrier height
of around 1.2 eV.  However, if there is a large density of surface states, the barrier height is
determined by the semiconductor surface and is independent of the metal work function [13].
Schottky barrier junctions have been produced on both n and p type CIS (Au and Al,
respectively) [14].

The current density versus voltage for a Schottky barrier can be expressed as

( )TknVq
S eJJ ≈    for V >> kT/q (2)

where Js is the saturation current density and n is the ideality factor.  The ideality factor is very
close to unity at low dopings and high temperature.  However, it can depart substantially from
unity when doping is increased or the temperature is lowered [15]. The barrier height can be
determined using
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where A**  is the effective Richardson constant which can be estimated based on the effective
mass [13].

The capacitance of an ideal Schottky barrier as a function of reverse bias voltage can be
expressed as
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where A is the junction area, ε0 is the dielectric constant, Nd is the semiconductor doping density,
and Vbi is the built-in voltage [13].  Therefore, the slope of 1/C2 vs. V can be used to determine
the doping density.

The Shockley ideal pn junction diode equation follows the same form as equation (2)
above.  The ideality factor is determined for the forward bias current and equals 2 when the
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recombination current dominates and equals 1 when the diffusion current dominates.  When both
currents are comparable, n has a value between 1 and 2 [13].

EXPERIMENT

A series of one micron thick films were electrodeposited on mechanically polished Mo
substrates using deposition potentials ranging from –1.0 to –1.4 V versus a saturated calomel
electrode (SCE).  An analogous set of films was also deposited on indium tin oxide (ITO) coated
glass.  The deposition solutions consisted of 1mM CuSO

4
, 10 mM In

2
(SO

4
)
3
, 5 mM SeO

2
, and

25 mM Na-citrate.
The deposition potentials used to deposit our thin films were based upon the results of

cyclic voltammetry.  These cyclic voltammograms and depositions were generated and monitored
by a Keithley 236 Source/Measure Unit interfaced to a personal computer and a EG&G 362
Scanning Potentiostat.  The composition of the resulting films were characterized by energy
dispersive spectroscopy (EDS).

The thickness of the films was calculated using the following equation based on
Faraday’s law







=

ρ
Mti

AFn
1

T
                (5)

where n is the number of electrons transferred, F is Faraday’s number, A is the electrode area, i is
the applied current,  t is the deposition time, M is the formula weight, and ρ is the density [16].

For our calculations, we used the formula weight (336.28 g/mol) and density (5.77 g/cm
3
) of

intrinsic CIS [17]. This is an approximation, since the formula weight and density vary with
composition.  The number of electrons transferred was taken as 13 according to the total
electrode reaction:

OHCuInSeeHSeOInCu 22
2
3

32 613122 +→++++ −+−++  (6)

The absorption coefficient versus photon energy of the films deposited on ITO was
determined from transmittance measurements in a Perkin Elmer Lambda 19 spectrophotometer.
Optical bandgaps were detemined from the absorption coefficient data using linear least-squares
analysis and assuming a direct bandgap dependence [9].

Schottky barriers were made on the series of films on Mo  by thermal evaporation of
aluminum using a positive photo-resist mask of 0.00095 cm2  pads.  Current versus voltage (I-V)
measurements were performed on these junctions to determine their barrier heights.  Capacitance
versus voltage (C-V) measurements were used to determine the carrier density of the films.

Based on our EDS results, we attempted to deposit pn junction from a single aqueous
solution using a step-function potential.  A -1.2 V vs. SCE potential was applied for 900 s and
then changed to -1.3 V for 90 s.  This was done in an attempt to produce an approximately
0.1 µm n-type CIS layer on a 1.0 µm p-type CIS layer.  A similar procedure was used to grow a
pn junction with slightly different characteristics (e.g., majority carrier densities) using voltages
of -1.1 and -1.3 V vs. SCE.  Ohmic contacts were made to the top n-side of the junctions using
thermal evaporation of aluminum and a shadow mask.
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The I-V characteristics of the Schottky barriers and pn junctions were measured using a
signatone wafer probing station and a Keithley 236 Source/Measure Unit interfaced to a 486 PC.
The Keithley 236 is replaced by a Keithley 590 CV Analyzer in this setup to measure the
C-V behavior of the Schottky barriers.  The C-V measurements were performed at 1kHz.

RESULTS

The cyclic voltammogram of the deposition bath identified the deposition potentials for
the various atomic constituents. These atomic deposition potentials are indicated by the increases
in the deposition current: Cu @ -0.4 V, Se @ –0.8 V, In @ -1.0 V (see Fig. 1).   Therefore, films
deposited at less negative potentials should have a larger Cu to In ratio. Comparing cyclic
voltammetry of ITO working electrodes to those of Mo showed a shift of -1.0V.

SEM micrographs show that the series of thin films on Mo were polycrystalline and dense
with a sub-micron grain size and a uniform thickness (see Fig. 2).  However, surface roughness
increased with more negative deposition potentials.

EDS analysis showed that the atomic percent of Se was between 50 and 53% for
deposition potentials from -1.0 to -1.4 V vs. SCE.  However, there is a large degree of variation
in the Cu to In ratio in the films as a function of deposition potential (see Fig. 3).  Based on these
results, we would expect that those films deposited at potentials less negative than -1.2 V vs.
SCE would be p-type, and those deposited at more negative potentials would be n-type [15].

Analysis of the transmission spectra of the series of films deposited on ITO revealed a

linear dependence of (αhν)
2
 versus photon energy, indicating a direct energy gap.  Non-linear

behavior occurred below 0.95 eV and was attributed to phonon related mechanisms.  The optical
band gap was found to increase for potentials less than and greater than –2.2 V vs. SCE (see
Fig. 4).  This change in optical bandgap is consistent with a Burstein-Moss shift,  and indicates
an increasing carrier density with deviation from stoichiometry.   However,  the linearity of

(αhν)
2
 versus hν was also reduced as the Cu/In ratio deviated from unity, most likely due to the

introduction of second phases.

7.5 µm

Figure 2.  SEM micrograph of an -1.2 V
as-deposited 1.0 µm thick CIS film.

-2.0
-1.0
0.0

1.0
2.0
3.0
4.0

5.0
6.0

0.0 0.5 1.0 1.5

Voltage (-V vs. SCE)

Figure 1. Cyclic voltammogram of the deposition
solution used in this study.
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The I-V behavior of the Al contacts on CIS films deposited at less negative potentials
than -1.2 V vs. SCE showed the rectifying behavior of a Shottky barrier.  This implies that these
films were p-type.  Al contacts on the films deposited at more negative potential that –1.2 V vs.
SCE showed ohmic behavior indicative of n-type films.   The semilog plots of current density
versus voltage showed the anticipated linear behavior and yielded barrier heights between 0.55
and 0.64 eV, with ideality factors much greater than one (see Table I).  A value for the hole
effective mass of 0.71 was used in our calculations [1].  The measured barrier heights are much
smaller than the theoretical prediction of 1.2 eV. The measured barrier heights of the Schottky
barriers were found to decrease with increasing carrier density.

The capacitance versus voltage measurements of the Schottky barriers demonstrated
linear 1/C2 vs. V behavior.  The doping densities based on the  least-square slopes were in good
agreement with previous studies and our  EDS results (see Table I).  A value of 8.1 was used for
the high frequency dielectric constant in our calculations [1].

Table I.  Measured material properties versus deposition voltage
   based on I-V and C-V results using Al contacts

Deposition
Voltage

(-V vs. SCE)

Semiconductor
Type

Barrier Height
(eV)

Carrier Density

1.00 P 0.56 1.1x1021

1.05 P 0.60 7.3x1020

1.10 P 0.64 2.8x1020

1.20 N 0.0 -
1.30 N 0.0 -
1.40 N 0.0 -

The I-V results of the (-1.0/-1.3V) pn junction showed the anticipated rectifying behavior
(see Figure 5).  The immediate flow of current in the reverse bias direction is indicative of a
"backward" diode [14].  This current is due to tunneling between degenerate or nearly degenerate
semiconductors.  This degeneracy is consistent with the above optical and Schottky barrier
results.  The (-1.1/-1.3V) pn junction showed less degeneracy as expected, with a more
characteristic Schockley diode behavior [13].

0

0.5

1

1.5

1 1.2 1.4 1.6

Deposition Voltage (-V vs. SCE)

Figure 3.  Cu to In ratio versus deposition voltage of
the as-deposited CIS films as determined by EDS.

0.8

0.9

1

1.1

1.2

0.7 0.8 0.9 1.0 1.1 1.2 1.3
Cu to In Ratio

Figure 4.  Optical bandgap versus deposition
potential.
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Figure 5.  I-V behavior of a –1.0/-1.3 V Figure 6. I-V behavior of a –1.1/-1.3 V
CIS-based pn junction CIS-based pn junction.

CONCLUSIONS

The electrodeposited Cu
x
In

2-x
Se

2
 thin films were shown to have stoichiometries which

varied linearly with the range of deposition potentials used in this study.  The optical band gaps
were found to be between 0.88 and 0.98 eV and increase with deviation from stoichiometry.
Schottky barrier behavior was observed for Al contacts to films deposited at potentials less
negative than –1.2 V.  The results are in agreement with  these films being p-type as indicated by
our EDS results and previous studies on native defects in CIS.  Current versus voltage
measurements confirmed the ability to deposit a pn junction from a single aqueous solution using
a step-function potential.
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